Escape the Legacy Trap: How to Migrate from Legacy Alarm Monitoring Equipment Without Spending a Fortune

Do you feel locked into your legacy network alarm monitoring equipment? Think you can't leave your legacy system without spending a fortune on a forklift swapout?

These case studies show you how other companies faced dead-end legacy support issues and explains how you can escape the legacy trap too.

NEW
Includes a Bonus Special Report:
11 Ways in which Embedded Monitoring Can Cost You Time, Money, and Uptime

Version 2.0
Released July 1, 2010

www.dpstele.com · 1-800-622-3314

“We protect your network like your business depends on it”™
How This White Paper Will Help You

If you work with an older network alarm monitoring system, chances are you’re looking for a way out. It’s difficult to maintain, you’re not happy with your support, and it’s not up to today’s technology.

But you feel like you’re stuck with it. The only alternative to keeping your legacy system forever is to replace everything, in a budget-crushing forklift swap out.

Are those really your only choices? This white paper will show you a way out of the legacy trap — a controlled migration strategy for replacing unsupported alarm monitoring equipment. With the right protocol mediation solution, you can monitor your existing legacy remotes with a modern central monitoring master. With a new stable system that is fully supported, you can replace your old RTUs over several budget cycles — without killing your budget.

Contents

Why Legacy Alarm Monitoring Equipment is a Problem ... 4

Case Study: Dominion Combines Three Systems Into One ... 7

RTU vs Equipment With Embedded Monitoring - 11 Critical Considerations Affecting Time, Money, and Your Uptime ... 9

Case Study: How a Real Life Tech Support Call Saved Hundreds of Thousands of Dollars 10

DPS Telecom Provides Support and Upgrade Options for Other Manufacturers’ Network Alarm Monitoring Equipment .. 14
Why Legacy Alarm Monitoring Equipment is a Problem

How long can you keep a network alarm monitoring system in the field? Companies that operate telecom networks, especially utilities, are holding on to their telemetry systems up to the very last minute of their working lives, and maintaining these older systems is becoming a huge problem.

If you have to work with an older monitoring system, you’re probably all too aware of the reluctance of upper management to finance large-scale replacements of network equipment. But what you probably don’t realize is how commonplace the problem has become.

In most of the industries that use telecom networks (telecom service providers, transportation, government services), financial decision-makers are traditionally unwilling to spend on new alarm monitoring equipment. Telemetry is wrongly seen as a cost center instead of an essential safeguard to network reliability.

But in the electrical utility field, the problem of legacy equipment is particularly harsh. The 2003 Electric Utility Study by Newton-Evans Research found that utilities simply are not making investments in new network infrastructure — because utilities don’t know whether they’ll keep their networks under deregulation.

“The biggest issue is uncertainty about deregulation and restructuring affecting ownership and operation of operational IT and automation assets, affecting technology investments. Automation systems are being kept running longer, and system-wide deployments of automation are being deferred,” the Newton-Evans study reported.

But you can’t keep your legacy alarm system forever

But keeping your network monitoring system forever is not a viable option, for several reasons:

1. Your legacy monitoring system will eventually have a complete breakdown
2. You can’t keep your network monitoring capabilities frozen in 1980s technology.
3. Your legacy system can’t be integrated into a modern network management system.

Legacy monitoring equipment is hard to maintain ... and that’s a serious problem

Maintaining an older alarm monitoring system is hard, and it just gets harder the older the system gets. Physical faults accumulate, equipment starts to break down, and repairing the monitoring system becomes a drain on department resources.

As your older monitoring system becomes less reliable, network visibility eventually declines, and you have an increased chance of not detecting and correcting serious network threats.

Eventually, your legacy system will break down completely, and you’ll have to come up with a replacement option fast.

Your monitoring can’t stay frozen in the 1980s

“The biggest issue is uncertainty about deregulation and restructuring affecting technology investments. Automation systems are being kept running longer, and system-wide deployments of automation are being deferred.”

Get a modern master that supports your existing remotes: DPS Telecom has made a commitment to supporting clients’ legacy remotes. T/Mon LNX supports a wide variety of third-party remotes, including the Larse 1200 series, the Badger 400 and 1200 series, the NEC 21SV, and the Pulsecom Datalok.
You can’t meet the challenges of managing a 21st century telecom network with a monitoring system that was designed in the 1980s. Slow serial connections, proprietary protocols, and primitive alarm management software cannot give you the best protection for your network reliability.

While your network alarm monitoring system has stayed the same, the environment that you work in has changed completely over the last ten years. You’re under relentless pressure to raise network reliability to higher, near-perfect levels — while your budget for meeting staff and training costs have been cut to the bone.

Compared to the average network manager of the 1980s and early 1990s, you’ve got higher performance standards to meet, and you’ve got a smaller, less highly trained staff to do it with.

That’s a tough job — and to meet this challenge, you need advanced telemetry features like after-hours monitoring, e-mail and pager alerts, automatic notification and correction, nuisance alarm filtering and qualification. You’re not going to get what you need from your legacy system.

Integrating your legacy systems is tricky
It’s hard enough maintaining one legacy monitoring system. What if you have two? There’s all kinds of reasons why you may have two or more incompatible systems. Older equipment tends to accumulate in layers, with different systems being used to monitor different parts of the network. Or if your company has acquired another, you may be responsible for two incompatible networks.

But then you’re faced with the problem of integrating the two systems. And even if you don’t have two legacy systems, you may still have to integrate your telemetry monitoring to your company’s modern SNMP network management system.

Old legacy monitoring equipment is a huge barrier to system integration. Proprietary protocols and slow serial transports don’t seamlessly connect with SNMP and Ethernet.

But replacing a legacy system can be even harder than keeping it
Despite all the disadvantages of an older alarm monitoring system, many network managers think that they can’t possibly afford to replace their legacy equipment — not without a budget-crushing forklift swapout.

Older network alarm monitoring systems are designed for one type of master station that receives alarm reports from one type of remote telemetry unit. You can’t replace one part of the system by itself — you must replace the whole system at once.

A systemwide forklift swapout makes no sense, either financially or technically:
1. A forklift swapout wastes the original investment in the legacy system. As soon as you replace the master you must scrap all the remote telemetry units, even if they could remain functional for years to come.
2. The capital expenditure of a forklift swapout is more than most companies can absorb in a single budget cycle.
3. Even if the equipment can be purchased, most companies don’t have the installation manpower to immediately deploy it in the field. The equipment must be stored until it can be installed, generating no return on investment.
4. A completely new network monitoring system must be installed in phases, creating a long changeover period during which there is little or no visibility of the network.

So are you caught between a rock and a hard place?
It seems like if you have a legacy monitoring system, you’re stuck between several unpleasant alternatives. You can’t afford a forklift swapout — you can’t stay frozen in dead-end old technology — and you can’t just wait for a complete system failure to force you into a forklift swapout.

What can be done?
What would a solution to the legacy problem look like?
1. It must immediately provide a technically stable platform that eliminates the danger of a sudden breakdown.
2. It must preserve the existing investment in legacy remote telemetry units.
3. It must not require a large immediate costs.
4. It must be a permanent solution to legacy problems—that is, it must be a modern system that supports open-ended developing, including adding new functionality and new remote telemetry units, and it must be backed by a stable vendor who can commit to long-term support. There is no point to leaving one dead-end legacy system for another.
The Way Out of the Legacy Trap

The Controlled Migration Solution

DPS Telecom has created a legacy support solution that addresses all four needs for a total solution to your legacy problem. The DPS solution gives you controlled migration option, so you can gradually move from your existing legacy system to a fully modern network alarm management system.

The solution consists of two steps:

1. Replacing the existing legacy master with a T/Mon LNX Remote Alarm Monitoring System, and
2. Controlled migration from legacy remotes to modern DPS Telecom remotes.

Replacing the master is an essential first step. The master station is the weakest point of any legacy network monitoring system. If it dies, the entire system is gone.

T/Mon LNX is a practical replacement for the legacy master because it can support the client’s currently installed legacy remotes. You can get an immediate solution to your most pressing problem — reliability and aging technology — by buying only one unit. The existing legacy remote telemetry units can be maintained in place until the end of their operational life.

Replacing the master station alone is seven to 10 times cheaper than a forklift swapout of the entire system.

T/Mon LNX is designed to support many different types of devices, regardless of protocol or manufacturer. Because of its modular software design, support for new types of equipment is easily added.

Currently, T/Mon LNX supports remotes from Larse, Badger, NEC, Dantel, Pulsecom, and Granger. If you need support for another system, a new custom solution can be designed quickly and at no extra cost.

T/Mon LNX is a fully modern, fully supported system with advanced features like after-hours monitoring, automatic notification, and automatic correction of alarm conditions. You can use these features with your existing remote telemetry units. With one step, you can immediately bring your existing system up to modern standards.

Once T/Mon LNX is in place, you can then gradually replace their legacy remote telemetry units with modern DPS Telecom remotes in a strategy of controlled migration.

Controlled migration puts you, not the vendor, in charge of the pace of migration. You control the cost and scheduling of new equipment purchases; the cost of installation transport and manpower; the sequence of network changeover and its impact on network visibility.

Controlled migration also creates two key financial benefits:

1. Migration can take place over several budget cycles, minimizing the impact on capital expenditure and operational budgets.
2. You can buy new equipment strictly as your installation capacity permits, creating an immediate return on investment for every equipment purchase.
Case Study: Dominion Combines Three Systems Into One

Nine months ago, Dominion had a problem. The Virginia-based energy giant operates an extensive internal communications network, and it was monitored by several different systems.

Dominion recognized that this was a serious business issue. Their internal network, which transports voice communications and SCADA telemetry data, plays an important role in guaranteeing reliable electricity service for Dominion’s customers.

Remote monitoring equipment was installed in 150 sites in a seven-state coverage area. “We had several different types of legacy remotes: Badger, Larse, NEC,” said Dan Jackson, a Dominion lead telecommunications technician.

Today, Dominion has a solution. DPS Telecom designed a new monitoring system for Dominion that incorporated their existing remotes. Dominion now has a full-featured modern system that can grow with their future needs, and they achieved this without having to do a forklift replacement of their legacy remotes.

“The thing I liked was that DPS was going to make it fit our needs. There weren’t going to try to make our stuff fit their stuff. They were going to make their stuff fit ours. I like that. I like that a lot,” said Jackson.

Dominion Recognized Their Problem and Set Clear Goals for a Solution

The systems were incompatible with each other, and when Dominion technical personnel first started looking for a way to fix their legacy support problem, no vendor seemed able to produce viable, cost-effective results.

Jackson and Mullen had clearly defined goals for how they wanted to solve the legacy problem. “We wanted to replace all the masters with one master. We also wanted to add native IP remotes and migrate as many sites as possible to IP network monitoring,” Jackson said.

Finding the Right Vendor was Difficult

But finding a vendor who could help them was a long and sometimes disappointing search. “We started looking last November,” Jackson said. “We came up with the criteria we wanted, wrote up an RFP [request for proposal] and sent it out to 11 different manufacturers. Six actually responded. We evaluated each first from a technical standpoint and then from a dollar standpoint. Several of the vendors had what we like to call vaporware. What it came down to was that the company that had the hardware and the software that could do what we wanted was DPS Telecom.”

According to Jackson, while other companies wanted to change substantial NRE fees for attempting to develop a solution — DPS Telecom, with its no-risk custom engineering guarantee, was ready, willing, and able to create a solution for Dominion.

“DPS was the only one that said it could do it all, either through hardware or software. Everyone else had an exception,” said Jackson. “Support for the Larse 1200 was a big piece,” said Mullen. “Nobody else had much on that.”
A Network Monitoring System Designed Around Dominion’s Needs

Jackson and Mullen also liked the can-do spirit of DPS Telecom’s engineers. “I like the attitude of the engineers. They want to see it work as much as we do and I think that’s really good. They seem to have a green light to be as creative as they need to be, either with the hardware or the software,” Jackson said.

In a few short months, DPS Telecom rapidly created a new, custom-engineered solution designed specifically for Dominion’s needs, a solution that let Dominion make the best use of their existing gear while smoothly transitioning to new remotes.

DPS Telecom supplied Dominion with an IAM-5 network alarm monitoring system running T/MonXM software. T/Mon replaces all of the older masters with a single unit. The T/Mon system is equipped with additional software modules for polling NEC, Larse, and Badger remotes. A DPS Telecom hardware unit, the FSK Converter, mediates data traffic between the IAM-5 and the frequency shift keyed (FSK) communication channel used by the Larse and Badger remotes.

To make the transition to the new system trouble-free, DPS Telecom transferred the alarm databases from the older masters to T/Mon using database conversion software. Jackson estimates that this step saved six to eight weeks of implementation time.

Smooth Migration Path to Replacing Remotes

With T/Mon Jackson and Mullen are no longer worried. But the real virtue of the solution is that it provides a smooth migration path for replacing their legacy remotes. Dominion plans to gradually replace their existing remotes with new NetGuardian units from DPS Telecom.

“If we didn’t have this solution, we’d have to look at a wholesale change-out of the Larse 1200s,” said Mullen. “We would have to start a process to get all those remotes replaced with something that could be supported in the future. And then you’re looking at the price of the remote plus you’ve got to send a man out there to spend a day to install it for each site.”

“You’d have to do them all within a very short period of time,” said Jackson. “Now we can spread it out over 18 to 24 months to do it. And because we don’t have all these other masters now, we’re looking at just one cutover, instead of doing it three different times for all the different remotes.”

Improved Network Visibility and New Capabilities

Dominion’s new system has already added substantially to their network visibility. “Now that we have IP-based remotes [the NetGuardians], we’re going to start picking up a lot of the offices we have in Texas and Utah, New Orleans, and Oklahoma and that area. We don’t own the telecommunications facilities that go there, while in all the other states we have our own communications network with microwave or fiber.”

Jackson is also looking at adding new network monitoring capabilities. “We may add derived alarms in a lot of places that have generators, multiple chargers, stuff like that. For example, we run a generator test every Tuesday, and with derived alarms we make sure it happens. We can create an if alarm if the test doesn’t occur within a certain time window on Tuesday,” said Jackson.

“And where we have multiple chargers at a site, we can set it up so that if only one charger is down it’s a minor alarm, but if you lose two it gets major, you lose three, then it’s critical, and if you lose the fourth one it’s beyond critical,” Jackson added. “Another thing, we can use the serial ports on the NetGuardians to look at other pieces of equipment. We haven’t figured out how we’re going to use that advantage, but it’s nice that it’s there. We may come up with some unique applications for that.”
RTU vs Equipment With Embedded Monitoring - 11 Critical Considerations Affecting Time, Money, and Your Uptime

Twenty-five years ago, if you wanted to monitor a site, you would use a RTU to collect the alarms. Over time transport equipment manufacturers began to improve the internal monitoring of their equipment, but they also started exposing alarm points that would allow users to bring in critical & major alarms from other devices in the site. The basic premise was that you could add an “alarm card” to the transport and bring back the alarms to the same management platform that was monitoring the transport / switching equipment.

Recently, however, companies have been thinking twice about pursuing these “embedded” solutions Here are the 8 reasons why companies choose independent external alarm collection devices:

1. **Embedded monitoring is a single point of failure.** When your equipment goes down, so does your monitoring.
2. **Core competency:** Telecom is a specialized industry. OEM’s are very good at their core competency, but alarming isn’t their key focus. It is however the focus of DPS Telecom. The embedded solutions typically don’t have functions like alarm qualification, alpha paging, local visibility and web browser interfaces. The proactive OEM’s have realized this and rather than re-invent the wheel have integrated alarm remotes like the NetGuardian 832A into their designs.
3. **Embedded solutions typically have a relatively low amount of discrete alarms and are not scalable.** This means that you either can’t monitor everything you want to see, or have to “OR” so many alarms together, you don’t know exactly what failed.
4. **Not all sites have the same type of equipment** deployed that has monitoring, so those sites don’t get monitored, or they have to be monitored by a non-standard way. Or you might find you have several different generations of embedded monitoring solutions, all with different capacities so you can’t come up with a common standard.
5. **Embedded solutions typically don’t support analog inputs.** This means that you can’t independently monitor any “value” that you are interested (i.e.: inside temp, outside temp, battery voltage, signal levels, etc).
6. **OEM solutions also don’t support external controls.** Controls allow you to remotely flip a relay to control some other device (i.e.: Reset a piece of equipment, open a door, start a generator, turn on a light).
7. **Embedded monitoring usually doesn’t include alternate-path reporting.** If you use embedded monitoring, you will probably only get a single communications path.
8. **As more telecommunications companies evolve more sophisticated Network Operations Centers that monitor many different devices, it makes more sense for the alarms to report directly to the NOC** in a common open protocol like SNMP. The ability of RTU’s like the NetGuardian to support multiple masters addresses today’s need for comprehensive disaster recovery plans.
9. **Frequent equipment upgrading.** Let’s take a look at the Cellular industry:
 Competition is more fierce than ever. Clients are demanding more bandwidth and features. How do companies address this? They buy new equipment to differentiate themselves. While great for the provider’s customers, it creates a multitude of problems / cost centers for the service provider. This is not a one time change, but a repeating cycle. Some vendors are dropping support for integrated alarming. In some cases, this means that operators have to keep the old system operating for the sole purpose of keeping their alarm system alive. This wastes, energy, tech time, space and dollars.
 Assuming your new transport gear does come with external monitoring functionality, you have several costs associated with it: First, the cost of the monitoring option. Second, the engineering & field tech time cost associated with cutting over the alarm termination to the new system. Keep in mind, all the alarms need to be tested again, documented and they may have to be re-databased on a new alarm master. Bottom line: avoiding unnecessary alarm cutovers saves time down the road for you techs, which can be put to much better uses. During those alarming transitions, your “continuous” visibility may become impaired. You never want to lose alarm visibility, especially when you are in the middle of a major change.
10. **Communications path:** Embedded solutions typically communicate using integrated signaling or some other hidden overhead channel. The upside of this is it is “Free”, but the risk is that if you lose the site, you lose your telemetry so you don’t have the complete picture of what is going on at the site and why. By using an out-of-band communications path (not part of the system), you will be far less likely to lose visibility.
11. **Local Visibility:** Embedded solutions don’t provide convenient methods for checking alarm status at the device level.

By deploying an external RTU, you address everything discussed. Not only will you get better site visibility on multiple fronts, you save lots of money by deploying alarm equipment once instead of every time your fundamental technology changes.
Case Study: How a Real Life Tech Support Call Saved Hundreds of Thousands of Dollars

When Glenn Lippincott of Southern Company called DPS Telecom tech support, he wasn’t planning on replacing his legacy Badger remotes with a new, custom-engineered network monitoring solution. He thought he had a simple question about his T/Mon system. But as tech support chief Ron Stover walked him through his T/Mon configuration, Lippincott saw a menu item that caught his eye. So he asked about it, and the answer helped him improve his network monitoring and save his company hundreds of thousands of dollars.

“Glenn called because his T/Mon system seemed to be missing a software module,” recalled Ron. “I wanted to double-check if it had been installed, so I told Glenn to look through the Installable Options list. While we were going over what was on his system he noticed there was a software module called ‘Badger Interrogator.’ And Glenn immediately asked, ‘Hey, what’s that?’”

Southern Company Had a Problem With Unsupported, Aging Legacy Remotes

Lippincott had good reason to be curious, because legacy Badger equipment had become a serious problem for him.

Lippincott works in the Birmingham NOC, where he oversees network monitoring throughout the Southern Company’s operational area. Southern Company, a Fortune 500 energy producer and distributor, has a territory that extends through most of Alabama and Georgia and parts of Florida and Mississippi.

Lippincott’s monitoring network includes over a hundred legacy Badger 1200 RTUs, polled by two Badger masters.

“It’s an older system. There hasn’t been an update in the software in 7 to 8 years. If the masters went bad, I’d be in trouble,” said Lippincott.

The Legacy Masters Were Dying

And unfortunately, that is exactly what was happening. Lippincott’s Badger masters were increasingly prone to failure. Lippincott was making repairs himself from cannibalized systems and a dwindling stock of hoarded spare parts.

“I had kept enough spares over time, so I was managing to keep them up. But once something goes wrong with these systems, it’s hard to get them back up again. And it’s a pain to set them up again once you have them running, too,” said Lippincott.

DPS told us we didn’t have to pay if it didn’t work. It works and it’s sweet.

— Glenn Lippincott, Southern Company
The Badger remotes were deployed throughout Alabama and Georgia, monitoring older systems, mostly legacy analog microwave sites, according to Lippincott. “The microwave sites are older, but it’s all significant equipment,” said Lippincott. “Also, in all of the places we use tower lights, which are also monitored by the Badgers, and if they go out it’s a pretty hefty fine.”

Tech Support Call Revealed the Solution

Lippincott knew he had a problem, but he didn’t know the solution to his problem was at his fingertips. Lippincott already was using the T/Mon Remote Alarm Monitoring System to poll the more than 500 DPS Telecom remotes that were monitoring the newer parts of his network, and he was familiar with its capabilities. But until he saw “Badger” listed as an option in the T/Mon software, Lippincott didn’t know that DPS Telecom had developed a solution for polling legacy Badger remotes.

Lippincott’s tech support call to Ron Stover turned into an expert consultation about how to create a legacy support solution for Southern Company.

“Glenn was very interested when I told him there was a software module for legacy Badger support,” said Ron Stover. “I told him that we’d developed this solution for another client who had the same problem. We started discussing Glenn’s issues with the Badger masters and how we could replace them with his T/Mon system.”

Developing the Custom Solution

As a test, Ron sent Lippincott a copy of the software module and instructed him to install it on his existing T/Mon system. But at first it didn’t work. The original Badger Interrogator software module for T/Mon was designed for the Badger model 481 RTU. Lippincott’s remotes were Badger 1200, a model that was originally manufactured by Larse as the Larse LarScan Series 1200. The Larse/Badger 1200 a 20-bit protocol, and the DPS Telecom solution was designed for Badger 481 remotes that used 8-bit protocol.

The answer to that issue was a customized solution. “Ron and I talked it over, and DPS gave us a quote to do, and then they did it,” said Lippincott.

The customized solution had a hardware component and a software component. The alarm data from Lippincott’s Badger remotes is transported in 20-bit packets across an FSK network. DPS Telecom engineers adapted an existing product, the FSK Converter, to convert the data from 20 bits to 8 bits. New software was written to allow T/Mon to read the Badger protocol.

Lippincott assisted DPS Telecom in development by providing sample equipment to work with. “I provided them with a remote, a Badger master that had gone flaky, and information about the system. Then they built it to my specification,” said Lippincott.

Development of the solution took three months, which was just in time, said Lippincott. “It was coming down the wire. I was down to my last two Badger masters that actually worked.”

No-Risk Development and Successful Results

For Lippincott, developing the custom solution was an easy choice. First, it was a no-risk proposition, since Southern Company was not charged for any development work. Second, the system works well.

“DPS told us we didn’t have to pay if it didn’t work. Shortly I’ll be telling them to send me the bill. I just completely moved over my last leg. It works and it’s sweet,” Lippincott said.
Smooth Migration Paths, Reliable Operation, and Best Quality Service

Providing reliable support for the legacy Badger remotes has brought an immediate benefit to Southern Company’s business operations. Without the DPS Telecom solution, Southern Company would have had to eventually replace the Badger masters and remotes all at once — a cost that would have amounted to several hundred thousand dollars — at once.

“We’re going to swap out the Badger remotes, but now, instead of doing a wholesale change, we can do it as our budget allows,” said Lippincott.

The new solution has also improved Southern Company’s monitoring. “It’s definitely simplified our operations,” said Lippincott. “We’re all working from the same platform. We don’t have to train people on two different systems.”

And knowing that his system is supported is a relief. “We don’t have to worry about service,” said Lippincott. “DPS gives the best service in the world, according to me.”

"We were going to swap out the Badger remotes, but now, instead of doing a wholesale change, we can do it as our budget allows..."

The LAN-based NetGuardian 832A is a comprehensive alarm collection solution for all your monitoring needs. With 32 ping alarms, 32 discrete alarms, eight analog alarms, and eight controls, the NetGuardian is designed to provide total site management. With this single, compact, one-rack-unit-sized device, you can verify that your IP network devices are online, your legacy telecommunications equipment is operating normally, and environmental conditions at your site are optimal.

Made for SNMP, the NetGuardian reports alarms as SNMP traps to any SNMP manager, and supports multiple SNMP managers at multiple IP addresses.

With a multi-capable remote like the NetGuardian, you can monitor all the various equipment at your remote site with one remote, saving valuable rack space for revenue-generating equipment.
T/Mon LNX: Full Support for Your Legacy Remotes and More

The T/Mon LNX Remote Alarm Monitoring System is a multiprotocol, multifunction network alarm manager designed as a single-platform solution for all alarm monitoring applications. T/Mon collects alarm data from a wide variety of equipment, regardless of manufacturer or protocol, and displays the state of your entire network in one interface, eliminating the need for specialized terminals.

Besides protocol support for your existing legacy remote telemetry units, T/Mon LNX offers advanced features other network telemetry masters can’t meet:

1. **Detailed alarm notifications in plain English that your staff will immediately understand and take action on.** Every notification includes full information about the alarm, including its severity, location, date/time stamp, and a user-defined description.

2. **Immediate notification of changes of state (COSs),** including new alarms and alarms that have cleared. You don’t have to hunt to find out what’s changed in your network — T/Mon lists it for you.

3. **A continuously updated list of all current standing alarms.** Even if the system operator acknowledges the alarm, it remains in the Standing Alarms screen until it is cleared.

4. **Text message windows displaying specific instructions for the appropriate action for an alarm.** System operators, even without extra training, will know precisely what to do and who to call in case of an alarm.

5. **Nuisance alarm filtering.** Unimportant alarms that generate meaningless status notices or oscillate between alarm and clear conditions subconsciously train your staff to ignore the alarm monitoring system. T/Mon filters out nuisance alarms, allowing your staff to focus its attention on serious threats.

6. **Pager and e-mail notifications.** Send alarm notifications directly to maintenance personnel, even if they’re away from the LNX.

7. **Derived alarms and controls** that combine and correlate data from multiple alarm inputs and automatically control remote site equipment to correct complex threats.

The T/Mon LNX Remote Alarm Monitoring System provides total visibility of your network status and automatically notifies the right people to keep your network running.

Sign up for a Web demo of T/Mon LNX at www.dpstele.com/meetings
DPS Telecom Provides Support and Upgrade Options for Other Manufacturers’ Network Alarm Monitoring Equipment

Fresno, California - Responding to clients’ need for an upgrade path for legacy network monitoring equipment, DPS Telecom CEO Bob Berry announced today that his company will provide support and upgrade options for any other manufacturer’s network alarm collection devices.

“Network managers are looking for ways to move to modern network alarm management capabilities. DPS Telecom will provide these clients with a cost-effective bridge from their legacy monitoring system to the T/Mon LNX Remote Alarm Monitoring System,” said Berry.

“Companies with aging legacy gear face some stark choices. Either they stick with their aging, possibly failing, monitoring system or they pay for a budget-destroying system-wide replacement,” said Berry. “DPS Telecom support for unsupported legacy remotes will give users a gradual upgrade path that will preserve both their capital expenditure and operational budgets.”

DPS Telecom’s support and upgrade offer will benefit to thousands of companies nationwide in the telecommunications and utilities industries who are dependent on legacy equipment for monitoring their communications networks.

The support includes:

DPS Telecom clients will not be charged NRE fees for any custom engineering required to create a support solution.

1. Polling of the client’s existing alarm collection devices by DPS Telecom’s advanced T/Mon LNX Remote Alarm Monitoring System

2. A controlled migration plan for gradually replacing the client’s legacy alarm collection devices with DPS Telecom units

3. Protocol mediation from legacy protocols to SNMP and TL1

4. Consolidation of multiple legacy systems to a single alarm management platform administered through T/Mon LNX

5. Options for updating to LAN-based data transport for remote telemetry

Legacy support is covered by DPS Telecom’s standard guarantee that all products, including custom-design solutions, are backed by a 30-day, no-risk guarantee.

“If we can’t support your existing system, you don’t pay for anything,” said Berry. “DPS Telecom is the only company in the industry that can provide this service and back it with a no-risk guarantee,”

Berry said that DPS Telecom can make this offer because of the company’s existing support for multiple proprietary protocols and experience in rapid development of custom engineering projects.

“In the past year alone, we have developed support solutions for Larse 1200 series, Badger 1200 series and NEC 21SV alarm collection devices,” said Berry. “The average turn-around time from our initial consultation with the client to delivering a finished product has been 60 days.”

DPS Telecom currently supports over 20 standard and proprietary protocols, including protocols for network alarm collection devices from Badger, Dantel, Granger, Larse, and Pulsecom.

More information about legacy support issues, including actual case studies of DPS Telecom clients, can be found at www.dpstele.com.
Why You Need Help With Your Legacy Support Project

Implementing a new network alarm monitoring system can seem deceptively easy — you just look on the Web, find a few vendors, compare a few features, add some configuration and you’re done, right? The truth is, developing a network monitoring system on your own is one of the riskiest things you can do. Here are some of the typical problems you might face if you don’t get expert advice when you’re designing your system:

1. **Implementation time is drawn out:** It’s going to take longer than you think. Network monitoring is a highly technical subject, and you have a lot to learn if you want a successful implementation. And anytime you are trying to do something you’ve never done before, you are bound to make mistakes — mistakes that extend your time and your budget beyond their limits.

2. **Resources are misused:** If you’re not fully informed about your options for mediating legacy protocols, you may replace equipment that could have been integrated into your new system. Rushing into a systemwide replacement when you could have integrated can cost you hundreds of thousands of dollars.

3. **Opportunities are missed:** If you install a new network monitoring system today, you’re committing your company to that system for as long as 8 to 10 years. Many telecoms design what they think is a state-of-the-art monitoring system — and then find that their technology is actually a generation behind.

DPS Telecom Guarantees Your Success — or Your Money Back

When you’re choosing a network monitoring vendor, don’t take chances. Be skeptical. Ask the hard questions. Above all, look for experience. Don’t take a sales rep’s word that his company can do custom development. Ask how many systems they’ve worked with, how many protocols they can integrate, and check for client testimonials.

DPS Telecom has created many successful legacy support implementations for telecoms, utility telecoms, and transportation companies. (Check out www.dpstele.com/case-studies for some examples.) DPS Telecom monitoring solutions are proven performers under real-world conditions.

You’re never taking any risk when you work with DPS Telecom. Your monitoring solution is backed by a 30-day, no-risk, money-back guarantee. Test your DPS monitoring solution at your site for 30 days. If you’re dissatisfied for any reason, just send it back for a full refund.

What to Do Next

Before you make a decision about your legacy support options, there’s a lot more you need to know. There’s dangers you want to avoid — and there’s also opportunities to improve your remote site maintenance that you don’t want to miss.

Get the information you need — register now for a free, live Web demonstration of legacy support solutions with the T/Mon Remote Alarm Monitoring System. There’s no obligation to buy — no high-pressure salesmen — just straightforward information to help you make the best decision about your network monitoring. You’ll get complete information on hardware, software, specific applications, specifications, features and benefits . . . plus you’ll be able to ask questions and get straight answers.

Call 1-800-622-3314 today to schedule your free Web demo of legacy support solutions — or register on the Web at www.dpstele.com/tmon-webdemo.
“The thing I liked was that DPS was going to make it fit our needs. There weren’t going to try to make our stuff fit their stuff. They were going to make their stuff fit ours. I like that. I like that a lot.”

—Daniel Jackson, Dominion

“It’s an older system. There hasn’t been an update in the software in 7 to 8 years. If the masters went bad, I’d be in trouble.”

—Glenn Lippincott, Southern Company

About the Author

Robert Berry is founder and CEO of DPS Telecom, an industry-leading developer of network alarm management solutions. Two decades’ experience designing remote telemetry systems have taught Berry that technology is most powerful when it meets real-world business needs. DPS Telecom clients have grown to appreciate Berry’s dedication to developing technology solutions that lower costs and raise revenue.

www.dpstele.com
1-800-622-3314

“Your Partners in Network Alarm Monitoring”

“We protect your network like your business depends on it”