Network Alarm Monitoring Fundamentals

A solid introduction to alarm monitoring essentials:

- What equipment you must monitor
- How to design an alarm system to meet your current and future needs
- How to minimize transition costs

Version 1.8
Released September 18, 2017

www.dpstelecom.com · 1-800-622-3314

“We protect your network like your business depends on it”™
How This White Paper Will Help You
If you’re just starting with network alarm monitoring, you probably have lots of questions. What equipment do you really need for an effective alarm system? How do you balance the need for network visibility against the need to reduce costs?
This White Paper will help you answer these questions for yourself. It covers how to analyze your network, determine your specific monitoring needs and create a system that fits your requirements and your budget.

Contents

Section I: Alarm Monitoring — Where Do You Start? 4
The 3 Step Plan for Creating a Perfect Fit Alarm System 4
Start Here: Network and Remote Site Survey .. 5
What Do You Need to Monitor? ... 5
General Principles for Selecting What to Monitor .. 7

Section II: How Do You Monitor It? .. 8
Acquisition: Getting Alarms Out of Your Equipment 8
Acquiring Alarm Data from Telecom and Transport Equipment 9
RTU Choice: NetGuardian 832A .. 9
Acquiring Power, Facility and Environmental Alarms 10
Transport: Getting Your Alarms from the Site to Your Screen 10
The Flexible RTU That Handles All Your Transports 10
Presentation: Displaying Your Alarms in an Actionable Format 11
7 Critical Features for Alarm Monitoring Masters ... 11
Alarm Master Choice: T/Mon ... 11
Why You Need a Real Alarm Master .. 12
5 Must Have RTU Features ... 13
3 RTUs to Fit Your Spec and Budget .. 13

Section III: How to Plan Your Alarm Monitoring Upgrade 14
This RTU Grows with Your Network .. 14
Letter From the President and About the Author .. 15
Section I: Alarm Monitoring — Where Do You Start?

You’ve just been put in charge of purchasing, selecting, or recommending a new network alarm system for your company. Where do you start? What alarm equipment do you need? What monitoring features are essential, and which can you live without? How can you make sure your network is fully protected, without spending too much on equipment you won’t use?

This White Paper is a quick guide to how you can answer these questions for yourself. This paper will NOT tell you, “Just buy this system and everything will be fine.” Every network is different. A one-size-fits-all system won’t provide the specific coverage you need and may cost more money than you really need to spend.

Instead, this White Paper will show you the right questions to ask. Before you can decide what alarm system to buy, you need to analyze your network and determine its specific monitoring needs. Figuring out what you really need your alarm system to do is your first step to designing a “perfect fit” system — one that’s custom-designed for your network equipment, your available data transport … and your budget, too.

The 3 Step Plan for Creating a Perfect Fit Alarm System

If you call DPS Telecom and ask what kind of alarm system you need, the DPS Sales Engineer won’t make a quick recommendation of “Buy this! Everyone has it. You should have it too!” Instead, your phone call starts a consultation in which your Sales Engineer will help you identify the network elements you need to monitor and the most effective way to monitor them.

This White Paper will take you through the same 3 steps as the DPS Telecom consultation process:

1. **Survey where you are now:** What alarm monitoring do you currently use, if any? What equipment do you need to monitor? What data transport is available in your network?

2. **Define your monitoring goals:** What would your ideal alarm system — the alarm system that does everything you need and want — look like? Do you need 24/7 pager and email notification? Do you want to integrate several different alarm systems onto one user interface?

3. **Plan your alarm system upgrade:** How do you get from where you are now to where you want to be? Is upgrading at once feasible and within your budget, or should you phase your upgrade over several budget cycles? What alarm capabilities do you need right now, and which can wait?

Learn Monitoring the Easy Way: Attend DPS Telecom Factory Training

“**DPS Factory Training is a big help in not feeling intimidated by your network monitoring system. It’s excellent — presented in the right way and tailored to the needs of the class.”**

— Bill Speck, 3 Rivers Telephone

Learn network alarm monitoring in-depth in a totally practical hands-on class. The DPS Telecom Factory Training Event will show you how to make your alarm monitoring easier and more effective. You’ll learn SNMP alarm monitoring, ASCII alarm processing, Derived Alarms and Controls, and how to configure automatic email and pager notifications. DPS training is the easiest way to learn alarm monitoring, taught by technicians who have installed hundreds of successful alarm monitoring deployments.

For dates and registration information, call **1-800-693-3314** today or go to **www.dpstele.com/training**.
Start Here: Network and Remote Site Survey

Your first step to get your alarm monitoring upgrade rolling is a complete survey of your current network and remote sites. This survey will document your existing alarm monitoring situation, in order to build a road map for your upgrade.

In your site survey, you’re looking for three things:

1. The equipment you need to monitor and the number of alarm points you’ll need to monitor it.
2. The currently available data transport between your remote sites and your Network Operations Center (NOC) — the office where your alarm presentation master is located.
3. Any existing alarm collection and presentation equipment you already have. You may be able to save money by incorporating your existing alarm equipment into your new, upgraded alarm system.

(DPS Telecom offers a five-page Remote Site Survey template that will help you organize your network and remote site survey. See box: “DPS Telecom Remote Site Survey.”)

Now let’s look at what kind of network equipment you should be monitoring.

What Do You Need to Monitor?

It takes a lot of equipment working together correctly to keep your network running, and you need accurate information about every element involved.

That means monitoring not only your base telecom equipment, but also all the equipment that supports it and the environmental conditions that all your equipment requires to operate correctly.

The things you need to monitor fall into four categories:

1. Telecom and transport equipment: switches, routers, SONET equipment, fiber optic equipment, microwave radios, etc.
 Don’t settle for monitoring your revenue-generating equipment with simple summary alarms that just tell you whether the equipment is up or down. Ideally, you want a comprehensive series of alarms that identify problems down to the card level.

DPS Telecom Remote Site Survey

RTU Capacity and Function

1. How many remote sites do you need to monitor?
2. Do you want video surveillance at those sites?
3. Do you want a building access control system to manage entry to those sites?
4. How many alarm points do you need to monitor at each site?
5. How much growth, in sites and alarms at each site, do you anticipate over the next 5 years?
6. Do you need any analog inputs (e.g., voltage, temperature, humidity, signal strength)?
7. How many ASCII devices (e.g., switches, routers, etc.) will you monitor at your remote sites?

Installation

1. How do you currently connect to your remote sites? (LAN, overhead, digital or analog circuit, terminal server, microwave?)
2. Do any of your sites support an alternate path communications link?
3. What type of power do you have at the master and remote sites? (–48 VDC, 110 VAC, other?)
4. How do you want to mount your RTUs? (23” rack, 19” rack, wall, tabletop?)
5. Who will install your RTUs?

This is just a small sample of the DPS Telecom Remote Site Survey. The full Remote Site Survey is a complete 5-page guide to evaluating your network alarm monitoring needs. For your copy of the Remote Site Survey, call DPS Telecom at 1-800-622-3314.
2. Power supplies: commercial AC power, battery plants, rectifiers, backup generators, UPS systems, etc.

Monitor your power supplies as thoroughly as possible — power outages are the most common cause of remote site failures. Just as your power supply has multiple fail-safes and backup systems, every one of those backups should be monitored.

At the basic level, you must monitor commercial power availability and battery levels. Getting more advanced, it’s also a good idea to monitor rectifiers and generators, including whether the generators perform their regular self-start tests. If you want the earliest possible warning of any problem that might interrupt your power supply, monitor every link in the power supply chain, right down to the fuel levels in generator diesel tanks.

3. Building and facility alarms: intrusion, entry, open door, fire, smoke, flooding, etc.

It’s vital to monitor the physical safety of the buildings that house your essential equipment. Since remote sites are usually unmanned and often in isolated locations, they’re highly vulnerable to vandals and intruders. Accidents like short circuits and small electrical fires, even if they’re small, can become disasters if you don’t have any way to detect them and intervene in time.

Your facility monitoring should begin with at least monitoring open doors and fire alarms. For added security, you may want to consider integrating an electronic building access control system and video surveillance to your alarm system.

4. Environmental conditions: temperature, humidity, etc.

Most electronic equipment operates best within a defined range of temperature and humidity — monitoring these factors will give you early warning of potential problems.

You’ll probably want to monitor different environmental conditions, depending on the physical location of the remote site. If the remote site is in a desert, humidity might not be a concern to you, but temperature probably will be. On the other hand, if your remote site has to function through an Iowa summer, humidity may be a major concern to you.

Another consideration is the sensitivity of your equipment. If it’s rated to operate under extreme ranges of temperature and humidity, you won’t have to monitor environmental factors quite so closely, but you’ll still want to make sure the site stays within the range specified for your equipment.

If your remote site is an environmentally controlled facility, you have a different set of factors to worry about. You need to monitor the continued operation of the heating, ventilation and air conditioning (HVAC) equipment that maintains the facil-
ity environment, plus you must be sure to monitor the power supply to the HVAC system. On top of that, you should still monitor temperature and humidity, as another safety check to make sure the HVAC is doing its job.

General Principles for Selecting What to Monitor

In the perfect alarm system of your dreams, you’ll have an alarm for every single factor that can affect network operations, but you’ll never spend extra money on alarm capacity you don’t need. In the real world, time and budget constraints usually mean you have to set priorities and carefully select which alarms you’re going to monitor.

When choosing network elements to monitor, keep these three principles in mind:

1. Paranoia is your friend. Think about everything that can possibly go wrong, because — guaranteed — someday it will.
2. The more detailed your monitoring, the smaller your wind-shield time and repair costs. Precise diagnostics help you send the right tech with the right tools to the right site.
3. It’s OK to start small and scale up. If you get an alarm system that can be upgraded, you can start monitoring your most critical network elements now, and gradually add more monitoring over several budget cycles.
4. Plan for your needs for the next five years. Your network and your monitoring needs will grow, and an alarm system that can’t grow with them will be obsolete as soon as it’s installed.

More Info Resources on the Web

The DPS Telecom **White Paper Series** offers a complete library of helpful advice and **survival guides** for every aspect of system monitoring and control.

www.dpstelecom.com/white-papers

24/7 Tech Support

First-class complementary tech support assists you whenever you need

The BVM 48 G2, NetGuardians, T/Mon LNX and other products offered by DPS include comprehensive technical support. If you’ve purchased DPS products to implement in your existing network and have questions, contact DPS Tech Support today at 559-454-1600.

At DPS Telecom, the representative who answers your call isn’t an intern reading from a script. **DPS Tech Support representatives are engineers**, the same ones who developed your products in the first place. And, if your problem requires additional expertise, the DPS Engineering Department that designed your product is right down the hall.

No matter how tough or technical your question is, you’ll always have the support you need from DPS Telecom - even outside of standard business hours. At no extra cost to you, DPS offers 24/7 emergency technical support. Just because you have a network emergency at 3 in the morning doesn’t mean you shouldn’t get the assistance you need.

Call **559-454-1600** or email **support@dpstele.com** for free tech support from DPS Tech Support Engineers.
Section II: How Do You Monitor It?

Now that you have an idea of what you should be monitoring, your next consideration is the nuts and bolts of how you are going to monitor it.

There are three phases to alarm monitoring: acquisition, transport and presentation. Let’s look at each phase in order.

Acquisition: Getting Alarms Out of Your Equipment
There are three kinds of alarm inputs: contact closures, analog inputs and protocol inputs.

Contact Closures
Contact closures are also called discrete alarms or digital inputs. A contact closure is a simple on/off switch that produces an electrical impulse when it’s activated or deactivated. Contact closures are the simplest kind of alarm input, so they’re often used as a kind of lowest-common-denominator means of getting some kind of alarm from any kind of equipment.

Analog Inputs
Analog inputs accept current or voltage level inputs over a continuous range. They’re the ideal kind of alarm for monitoring things like temperature and battery charge, where it’s important to get an actual, physical measurement of the condition in real time.

Here’s where having a quality alarm system really counts. Some alarm systems simulate analog alarms with “threshold” alarms. For example, you might get a low-battery alarm if the battery voltage drops to –48 volts. But that information by itself is meaningless. After the voltage crosses the –48-volt threshold, does it stay there (indicating that the battery is merely low) or does it continue to drop (indicating that the battery is being rapidly drained)? With threshold alarms, you have no way to tell.

DPS Telecom alarm equipment features analog alarms that report live, real-time analog values, giving you true visibility of these kinds of alarm conditions. Additionally, DPS analog alarms support four user-configurable thresholds (Major Under, Minor Under, Minor Over and Major Over), to provide best-quality notification of changing events.

Protocol Inputs
Protocol inputs are electrical signals formatted into a formal code that can represent much more complex information than contact closures or analogs. There’s a wide variety of protocols for transmitting telecom alarm data. The most common telemetry protocols are open standards like SNMP, DNP, ASCII and TL1, but there are also manufacturer-specific proprietary protocols. SNMP, TL1 and ASCII are simply ways of encoding ordinary written text for electronic transmission; these protocols are human-readable, if you know the code’s terminology and operators.
Acquiring Alarm Data from Telecom and Transport Equipment

Unfortunately, there’s no standard alarm output for switches, routers, SONET equipment and other telecom and transport gear. You’ll have to check each type of transport equipment in your network to see what kind of alarms it supports.

The best way to find out what kind of alarming your equipment can do is to check the documentation supplied by the manufacturer. The documentation should have at least a short section describing the equipment’s alarm outputs.

Ideally, your equipment will support some kind of protocol interface, giving you detailed visibility of its internal operations. But your equipment may only support contact closure outputs, which depending on how many contact closures it has — may only give you a handful of summary alarms.

However, if your equipment doesn’t have a documented protocol output, check it for a printer port, a report-only printer (ROP) port or a craft port. This port is designed to output a detailed log of equipment activity in the form of an ASCII text stream.

Historically, this ASCII output port was originally intended to connect to a printer for producing activity log printouts. A printout is a great way to keep a detailed record of what has happened in the past, but it’s not a good way to monitor what’s happening right now.

However, T/Mon provides a way to turn that ASCII stream into actionable, real-time alarm data. T/Mon’s optional ASCII Processor Software Module can automatically capture ASCII text, extract important information from the text stream, and convert the text to a standard T/Mon alarm notification.

If It Prints, You Can Monitor It

Why is ASCII alarm processing so great? First, it’s a simple way to get useful information from nearly any transport gear. If it prints, you can monitor it. Second … how many times have you been woken up by an alarm page at 3 A.M.? Wouldn’t you like to know if you really have to go to the remote site — or if you can safely go back to bed?

ASCII alarms give you detailed reports on the condition of your equipment, isolating problems right down to the level of what shelf and what card need repairs.

T/Mon Makes ASCII Usable

T/Mon’s ASCII Alarm Processor Software Module scans ASCII text for alarm messages and converts them to standard T/Mon alarms.

Once an ASCII alarm is acquired, you can use it with any of T/Mon’s advanced features: automatic pager and email notification, automatic alarm correction responses and more.

RTU Choice: NetGuardian 832A

The NetGuardian 832A is a full-featured remote telemetry unit. The NetGuardian supports 32 discrete alarms, 32 ping alarms, 8 analog inputs, 8 controls, and 8 serial reach-through ports. The optional NetGuardian Expansion Unit can expand the NetGuardian’s discrete alarm capacity to 80, 128 or 176 discrete alarms. The NetGuardian reports to T/Mon or to multiple SNMP managers — or you can use the NetGuardian’s built-in Web Browser Interface and email alarm notification to monitor your remote site without a master.

For more information, check out the NetGuardian on the Web at www.dpstele.com/netguardian.
Acquiring Power, Facility and Environmental Alarms
Power, facility and environmental alarms are collected by groups of individual sensors connected to site equipment like battery plants, generators, doors, temperature sensors and so on.

Outputs from these sensors are in turn connected to a remote telemetry unit (RTU) that converts contact closure and analog inputs into a protocol output, which is forwarded to your alarm presentation master.

Every model of RTU has a defined capacity of how many contact closure and analog inputs it supports. The alarm capacity of your RTU is the limiting factor for how much alarm information you can acquire from your remote site. You don’t want an RTU that has too little alarm capacity, because that will give you only vague and incomplete information about the state of the remote site. On the other hand, you don’t want to pay for unneeded alarm capacity, either.

Your remote site survey will help you determine the correct alarm capacity for each type of remote site in your network. It’s also a good idea to look for an RTU whose alarm capacity can be easily upgraded. An RTU with expansion capability will grow with your remote site without your having to buy entirely new equipment.

Transport: Getting Your Alarms from the Site to Your Screen
Once alarm data collected at your remote sites, it needs to be transmitted over a data network to your alarm presentation master at your NOC. Alarm data can be sent over nearly any kind of data transport: Ethernet LAN/WAN, dial-up modem, dedicated circuit, overhead channel, etc.

There are two things you should keep in mind about alarm data transport:
1. As much as possible, you want to work with transports that are already available in your network. You don’t want to create added expenses by committing yourself to installing new network infrastructure. It’s best to choose an alarm system that is compatible with the transports you already have.
2. It’s a good idea to have a secondary backup path for your alarm data in case your primary path fails. No transport is 100% reliable, and you don’t want to lose alarm visibility of your revenue-generating network under any circumstances.

The Flexible RTU that Handles all your Transports
With the NetGuardian 832A/864A, multiple transports are no problem. This flexible RTU supports a variety of transport: LAN, dial-up, optional serial connection (for legacy 202 modem, FSK modem, or RS-232), fiber, T1 (864A), and GSM/CDMA. The NetGuardian can work with whatever transport is available at your remote sites.

Networks that are in transition aren’t a problem for the NetGuardian either. The NetGuardian supports LAN, dial-up and serial connections simultaneously. So as your network upgrades from legacy transports to LAN, you can use the same NetGuardian units at all your sites.

What can the NetGuardian do for you?
• You can use one RTU at all your remote sites, no matter what transport is available.
• You don’t have to install new transport to collect alarms.
• As your network changes, you don’t have to buy new remotes for new transports.
• You only have to maintain one set of spare units and spare parts for your entire network, for great cost savings and convenience.
• All your alarms are in one common format. You don’t have to use a confusion of multiple consoles and multiple screens to monitor all your remote sites.

Because of its multiple transport capability, the NetGuardian also supports applications for bridging across multiple transports, and even strategies for protocol mediation and replacing legacy monitoring equipment.
Presentation: Displaying Your Alarms in an Actionable Format

The final phase in alarm monitoring is presenting the alarm data in a useful way so that a human being can read the information and use it to direct repairs. This is done through a specialized computer called an alarm presentation master. The master collects the alarm reports from RTUs at the remote site and then formats, sorts and displays the information for a human operator.

The master is really the most important part of the entire alarm system. For the NOC technicians who monitor alarms and dispatch repairs, the master IS the alarm system — it’s the only window they have to see what’s going on in the network. The features and capabilities of your alarm master directly control how much useful information your NOC techs can see. A high-quality, full-featured alarm master gives you the tools to substantially lower your network maintenance costs.

7 Critical Features for Alarm Monitoring Masters

Here’s a list of 7 critical features that your alarm master should have:

1. **Protocol mediation and multiprotocol support**: You probably have several different types of transport equipment to monitor, and you may have several generations of legacy alarm monitoring equipment as well. All these different types of equipment report alarms using different incompatible protocols.

 You definitely want to have one alarm master that can support all the monitoring protocols your equipment uses and display all of your alarms on one screen. Trying to monitor by watching two or more screens is hard work that confuses even the best system operators, and sooner or later someone will miss a major alarm.

2. **24/7 unmanned monitoring via pager and email notification**: Some companies can afford to pay staff to watch a monitoring screen 24 hours a day, seven days a week, including weekends and holidays. Your company probably isn’t one of them. But you don’t need a 24/7 staff if your alarm master can automatically send alarm notifications to on-call technicians via email, text message, or pager.

3. **Detailed alarm descriptions**: Some alarm masters display alarms as cryptic numeric codes. You want a system that displays alarms in plain English, with a complete description of what the problem is and what action you should take to correct it.

4. **Alarm sorting and categorizing**: If your alarm system just shows you one long list of alarms from your entire network, it’s easy to lose track of critical information. A quality alarm system can sort and categorize your alarms several different ways.

5. **Standing alarm list is continuously updated**:

 If your alarm system just shows you one long list of alarms from your entire network, it’s easy to lose track of critical information. A quality alarm system can sort and categorize your alarms several different ways.

6. **Detailed, plain English alarm descriptions** include severity, location and date/time stamp.

7. **Immediate notification of COS alarms**, including new alarms and alarms that have cleared

 For more information, check out T/Mon on the Web at www.dpstelecom.com/tmon.
ways, by severity, remote site, equipment type or other criteria you define.

5. Separate Standing Alarm and Change of State (COS) Alarm lists: A Standing Alarm list displays all alarms that are currently uncorrected. A Change of State (COS) Alarm list displays all new events that happen in your network, including alarm points that go into an alarm state and alarm points that are cleared. If your alarm master supports both views, you have the quickest and most accurate picture of your network’s current status.

6. Nuisance alarm filtering: Your equipment might generate a lot of alarms that are merely status reports that require no corrective action. These are nuisance alarms, and they’re more dangerous than you might think. Nuisance alarms desensitize your monitoring staff to alarm reports, and they start to believe that all alarms are nonessential alarms. Eventually they stop responding even to critical alarms. Look for an alarm system with tools to filter out nuisance alarms.

7. Expansion capability: An alarm system is a long-term investment that will last for as long as 10 to 15 years. So you need an alarm system that will support your future growth for up to 15 years. In that time your network is going to grow in size, you’re going to add new kinds of equipment, and you’re going to need new alarm monitoring capabilities. Make sure your alarm master can grow and change with your network.

T/Mon Can Monitor All Your Equipment

Most alarm monitoring systems support only one protocol or one kind of device. T/Mon isn’t limited like that.

T/Mon supports over 25 protocols, including SNMP, TL1, ASCII, E2A, TBOS, TABS, MODBUS and even proprietary protocols like Badger, Larse, NEC, Pulsecom and more.

T/Mon monitors your whole network on just one screen.

T/Mon gives you capabilities you can’t get from separate, isolated systems:
- Know absolutely, 100% for certain if you have an alarm
- Monitor every essential piece of equipment in your network
- Correlate alarms across your entire network
- Simplify training, maintenance and databasing

Why You Need a Real Alarm Master — NOT Integrated Scan Points or an SNMP Manager

It’s tempting to try to build a home-grown alarm master out of equipment you already have, like your revenue-generating equipment or an SNMP manager. But these won’t give you the best visibility of your network. Here’s why:

Integrated monitoring has limited capacity and flexibility

Some equipment has a few integrated alarm points. You’ll quickly outgrow those five or six alarm points. You’ll quickly start to tie multiple sensors (“ORing”) to one point. When this happens, an alarm can mean anything — maybe the building is on fire … or that the battery is just low.

SNMP managers don’t support the functions you need

Off-the-shelf SNMP managers don’t support the critical alarm presentation functions. Here are some of the features you can’t find on a standard SNMP manager:

1. Detailed alarm descriptions, including date/time stamping, location and severity.
2. Immediate notification of change of state (COS) alarms.
3. Continuously updated list of current standing alarms.
4. Multi-user security.
5. Alarm sorting and nuisance alarm filtering
5 Must-Have RTU Features

Here’s a list of 5 features you must-have in any RTU:

1. **Alarm Point Capacity Requirements:** The first step in selecting an RTU is determining the number of individual alarm points you will need to monitor. Once you know this figure, you’ll need to select an RTU with the necessary discrete and analog alarm point capacity needed to cover each of your individual sites.

 Discrete alarms are useful for monitoring device failures, intrusion alarms, beacons, floods and fires. Analog alarms give you realtime values for voltage, temperature, humidity and pressure.

2. **Control Relays:** A control relay allows you to remotely adjust the on/off status of your site’s equipment. Control relays can be used to switch lights, generators, door locks, and other critical operations.

 If you plan on using control relays, choose an RTU that can handle the voltage requirements needed to control your devices. Your RTU should also support N/O and N/C, so if power fails, your relay will return to its intended operation.

3. **Derived Alarms:** Advanced remotes should allow you to create alarms in response to multiple user-defined conditions. With derived alarms, you can trigger a single unique alarm when various other alarms occur simultaneously.

 For example, commercial power failure at an enclosure might be a minor alarm. Low battery at an enclosure might be a minor alarm. However, the combination of power failure and low battery should be reported as a critical alarm, and derived alarms allow you to do just that.

4. **Web Interface:** Advanced remotes provide you and your technicians direct access to your site through an internet-based web interface. Look for RTUs that don’t require you to install special software or complicated computer configurations. The best RTUs provide web interfaces that can be quickly accessed from your computer, enabling you to monitor all of your devices from anywhere in the world.

5. **Open Protocol Support:** Avoid RTUs that lock you into a specific vendor’s line of equipment with proprietary protocol communications. Deploying open-protocol remotes, such as SNMP, can give you the freedom to change and upgrade equipment when needed.

 As technology advances and your alarm monitoring needs change, being locked into a proprietary protocol can cost you a lot of unnecessary resources. When your RTU supports an open-source protocol, you are able to upgrade devices at your discretion rather than relying on expensive and limited equipment.

3 RTUs to Fit Your Spec and Budget

The NetGuardian RTU family scales to fit your needs …

Full-featured NetGuardian 832A
- 32 discretes, 32 pings, 8 analogs and 8 controls
- 8 terminal server serial ports
- NEBS Level 3 certified
- For SNMP, TL1 or T/Mon
- Dial-up backup
- Web browser interface
- Pager and email notification
- Dual -48 VDC, -24 VDC or 110 AC
- 1 RU for 19” or 23” rack

Heavy-duty NetGuardian 480
- 80 discretes, 4 controls
- For SNMP, TL1 or T/Mon
- Dual -48 VDC
- 1 RU for 19” or 23” rack

Economical NetGuardian 216
- 16 discretes, 2 analogs, 2 controls
- 1 terminal server serial port
- SNMP and Email Notifications
- Single or dual -48VDC or 110 VAC
- 2 compact form factors for rack or wall mount
Section III: How to Plan Your Alarm Monitoring Upgrade

In the previous sections, you’ve seen what equipment you should monitor and what features a good alarm system should have. So you should have some sense of what would be the ideal alarm system that will give you the best possible visibility of your network.

The question is, how do you get from where you are to where you want to be? It’s very rare for a company to be able to suddenly leap from their current alarm monitoring to their ideal system. Budget restrictions and the cost of installing equipment means you can’t usually get everything you want in one budget year.

Here are some strategies that will help you find a smooth, gradual upgrade path that will let you transition to a new alarm system over several budget cycles:

• **Define your immediate monitoring needs:** What are the essential alarm monitoring capabilities that you must have today? What critical equipment do you absolutely have to monitor right now?

 Keep in mind, your definition of an immediate, essential need might be different than someone else’s. For example, if you have the staff to keep an eye on an alarm screen 24/7, you might not need pager notification. But if you need to manage critical network assets during unmanned after-hours and weekend times, paging is an essential capability.

• **Start slow, then expand:** Once you’ve taken care of your bare minimum needs, you can add more alarm capacity and more monitoring capabilities over several budget cycles. You don’t have to spend more than you can afford in one budget year, but you’ll gradually move toward your ideal system.

• **Use protocol mediation to incorporate existing equipment:** The first stages of your upgrade can be easier and more cost-effective if you can install a new alarm master first, and then gradually replace RTUs at your remote sites. An alarm master with multiprotocol support can support your existing remotes, so you can immediately add new presentation capabilities without replacing all your remote site equipment.

• **Keep your future goals in mind:** While you’re planning your expansion, think about what your monitoring needs are likely to be 5, 10, 15 years down the road. It’s easier and more cost-effective to add alarm capacity in a controlled way in the immediate future than to rush a new deployment through when you’ve exceeded your alarm capacity.

This RTU Grows with Your Network

When you’re planning your alarm monitoring, think about the future. You don’t want to get locked into an alarm system that’s inadequate for your future needs — but you don’t want to spend too much for alarm capacity you won’t immediately use, either.

The NetGuardian 832A remote telemetry unit expands its capacity as your needs change. Install a NetGuardian at your remote site now, and get exactly the right coverage for your current needs.

Then, as your remote site grows, you can extend your alarm monitoring capabilities by adding NetGuardian DX Expansion units. Each NetGuardian DX adds 48 more alarm points, and you can daisy-chain up to three NetGuardian DXs off each NetGuardian 832A base unit.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base NG 832</td>
<td>32</td>
</tr>
<tr>
<td>1 DX</td>
<td>80</td>
</tr>
<tr>
<td>2 DX</td>
<td>128</td>
</tr>
<tr>
<td>3 DX</td>
<td>176</td>
</tr>
</tbody>
</table>
DPS Delivers Top-Quality Monitoring
Gear and Client Satisfaction

The DPS Promise from Marshall DenHartog, President

You shouldn’t have to take any risks to get the monitoring and control capabilities you need. If you decide to work with me, I won’t let you fail.

If my solution doesn’t solve your problems 100%, I don’t want you to have it. I have three goals: I want to sell my product, I want you to use my product, and I want you to be completely satisfied with my product.

If my product doesn’t fulfill those goals, I will fix it, improve it, or give you your money back. If my stuff doesn’t wow you, I don’t want your business.

So here’s my guarantee to you: if you buy a DPS Telecom solution, you can test at your site, under real-world conditions, for 30 days. If you’re dissatisfied with it, for any reason, just send it back and you’ll get a full refund, no questions asked.

So please — if you’re interested in any of our products, do yourself a favor and call us today at 1-800-622-3314. Your network’s needs can’t wait. I promise you — we’ll deliver a solution to your problems, at no risk to you.

Sincerely,

Marshall DenHartog
President
DPS Telecom

About the Author

Mark Carberry is the Senior Vice President of DPS Telecom, a leading developer of integrated alarm monitoring and control solutions. Mark’s engineering skill and dedication to solving his clients’ real-world problems has helped grow DPS from a small consulting firm to an Inc. 500 company.
Alarm Monitoring Solutions from DPS Telecom

Alarm Monitoring Masters

T/Mon: Full-featured alarm master for up to 1 million alarm points. Features support for 25 protocols, protocol mediation, alarm forwarding, pager and e-mail alarm notification, Web Browser access, multi-user access, standing alarm list, alarm history logging.

T/Mon SLIM: Light capacity regional alarm master. Supports up to 64 devices and 7,500 alarm points. Features pager and email alarm notification, Web Browser access, standing alarm list and alarm history logging.

Remote Telemetry Units

NetGuardian 832A: RTU monitors 32 alarm points, 8 analog inputs, 8 control relays, 32 ping targets, 8 terminal server ports; reports to any SNMP manager, T/Mon or T/Mon SLIM.

NetGuardian 216: RTU monitors 16 alarm points, 2 analog inputs, 2 control relays, 1 terminal server port; reports to any SNMP manager, T/Mon or T/Mon SLIM.

NetGuardian 480: RTU monitors 80 alarm points, 4 control relays; reports to any SNMP manager, TL1 master, T/Mon or T/Mon SLIM.

Remote Alarm Block 176N: Wire-wrap alarm block monitors 176 alarm points, 4 controls; reports to any SNMP manager, T/Mon or T/Mon SLIM.

www.dpstelecom.com
1-800-622-3314

"We protect your network like your business depends on it"